ABDK
L

AAAAA

SMART CONTRACT AUDIT CONCLUSION

Mikhail Vladimirov and Dmitry Khovratovich

22nd December 2020

Summary

We've been asked to review the Tornado smart contracts given in separate files. At some point we were also
given the formal spec.

N Major
H Moderate
E™ Minor

59%

TORNADO
REVIEW

Findings

ID
CVF-1
CVF-2
CVF-3
CVF-4
CVF-5
CVF-6
CVEF-7
CVF-8
CVF-9
CVF-10
CVF-11
CVF-12
CVF-13
CVF-14
CVF-15
CVF-16
CVF-17
CVF-18
CVF-19
CVF-20
CVF-21
CVF-22
CVF-23
CVF-24
CVF-25
CVF-26
CVF-27
CVF-28
CVF-29
CVF-30
CVF-31

Issue
Minor
Minor
Minor
Major
Moderate
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Minor
Moderate
Minor
Moderate
Moderate
Moderate
Moderate
Moderate
Moderate
Minor
Moderate
Moderate
Moderate
Minor
Moderate
Minor
Moderate

Major

Description

Suboptimal Solidity Version
Generic interface name
Reference to Poseidon
Large input type

Return absence

Generic interface name
Generic function name
Incorrect function

Incorrect function parameter naming
Documentation Comment
Complicated interface
Uninitialized variable
Bitwise operation
Expensive deployment
Incorrect comment
Documentation comment needed
The SafeMath.sub incorrect using
Unclear function behavior
Redundant variable
Common functionality
Suboptimal Deploy
Inefficient hashing
Redundant word ”Data”
Not indexed parameters
Complicated Interface

The expensive deployment
The redundant call

Gas spending

Suboptimal Parameter
Incorrect Modifier

Numerous checks

Status

Fixed
Info
Info
Info
Fixed
Info
Info
Fixed
Fixed
Info
Info
Info
Info
Info
Info
Info
Info
Fixed
Fixed
Info
Info
Info
Info
Info
Info
Info
Info
Info
Info
Fixed
Info

TORNADO
REVIEW

ID Issue Description Status
CVF-32 Major Inputs Overflow Info
CVF-33 Moderate Similar function Info
CVF-34 Moderate Missed modifier Fixed
CVF-35 Minor The name suggestion Fixed
CVF-36 Minor The name suggestion-2 Fixed
CVF-37 Moderate The public function Info
CVF-38 Minor The confusing interface name Info
CVF-39 Minor The redundant word ”New” Fixed
CVF-40 Minor The Typo Fixed
CVF-41 Moderate The complicated check Info
CVF-42 Moderate Gas efficient Fixed
CVF-43 Moderate Suboptimal loop Info
CVF-44 Moderate Suboptimal condition Fixed
CVF-45 Minor The suboptimal index Info
CVF-46 Minor Redundant loop Info
CVF-47 Minor Suboptimal delegating Open
CVF-48 Minor The Confusing function name Info
CVF-49 Minor Misleading file name Info
CVF-50 Minor Expensive deployment Info
CVF-51 Minor Inefficient function Info
CVF-52 Minor The return indexes absence Info

TORNADO

REVIEW ABDK

Contents

1 Introduction 6
1.1 About ABDK e 6
1.2 About Customer e 6
1.3 Disclaimer e 6

2 Findings 7

3 Detailed Results 9
3.1 CVF-1 Suboptimal Solidity Version 9
3.2 CVF-2 Generic interface name e 9
3.3 CVF-3 Reference to Poseidon 9
3.4 CVF-4 Large input type o o o i 10
3.5 CVF-5 Return absence e 10
3.6 CVF-6 Generic interface name e 10
3.7 CVF-7 Generic function name e e 11
3.8 CVF-8 Incorrect function e 11
3.9 CVF-9 Incorrect function parameter naming L 11
3.10 CVF-10 Documentation Comment e 12
3.11 CVF-11 Complicated interface 12
3.12 CVF-12 Uninitialized variable 12
3.13 CVF-13 Bitwise operation L 13
3.14 CVF-14 Expensive deployment 13
3.15 CVF-15 Incorrect comment e e e 13
3.16 CVF-16 Documentation comment needed 14
3.17 CVF-17 SafeMath.sub incorrect using 14
3.18 CVF-18 Unclear function behavior 14
3.19 CVF-19 Redundant variable e 15
3.20 CVF-20 Common functionality 15
3.21 CVF-21 Suboptimal deploy 15
3.22 CVF-22 Inefficient hashing 16
3.23 CVF-23 Redundant word "Data"o 16
3.24 CVF-24 Not indexed parameters e 16
3.25 CVF-25 Complicated Interface e 17
3.26 CVF-26 The expensive deployment 17
3.27 CVF-27 Theredundant call e 17
3.28 CVF-28 Gasspending e e e 18
3.29 CVF-29 Suboptimal Parameter 18
3.30 CVF-30 Incorrect Modifier e 18
3.31 CVF-31 Numerous checks e 19
3.32 CVF-32 Inputs overflow e 19
3.33 CVF-33 Similar function e 20
3.34 CVF-34 Missed modifier e 20
3.35 CVF-35 The name suggestion i 20
3.36 CVF-36 The name suggestion-2 i 21
3.37 CVF-37 Public function e 21
3.38 CVF-38 The confusing interface name 21
3.39 CVF-39 The redundant word "New" 22
340 CVF-40 The typo . . . o o o o o e 22
3.41 CVF-41 The complicated check 22

TORNADO

REVIEW ABDK
3.42 CVF-42 Gas efficient e 23
3.43 CVF-43 Suboptimal loop e 23
3.44 CVF-44 Suboptimal Condition e 23
3.45 CVF-45 The suboptimal index 24
3.46 CVF-46 Redundant loop 24
3.47 CVF-47 Suboptimal delegating 24
3.48 CVF-48 Confusing function name e 25
3.49 CVF-49 Misleading file name 25
3.50 CVF-50 Expensive deployment 25
3.51 CVF-51 Inefficient function 26
3.52 CVF-52 Index return absence 26

TORNADO
REVIEW ABDK

1 Introduction

The following document provides the result of the audit performed by ABDK Consulting at the Tornado request.
The next initial data were obtained:

e the code from a private repository at GitHub/TornadoCash at the commit
9ec05a681d9699a11733b3163dd44ale90abc345.

The audit goal is a general review of the smart contracts structure, critical/major bugs detection and issuing
the general recommendations.

1.1 About ABDK

ABDK Consulting, established in 2016, is a leading service provider in the space of blockchain development and au-
dit. It has contributed to numerous blockchain projects, and co-authored some widely known blockchain primitives
like Poseidon hash function. The ABDK Audit Team, led by Mikhail Vladimirov and Dmitry Khovratovich, has
conducted over 40 audits of blockchain projects in Solidity, Rust, Circom, C++, JavaScript, and other languages.

1.2 About Customer

Tornado Cash is a decentralized Ethereum Mixer. ABDK had audited previous versions of Tornado Cash, and is
now reviewing the changes only.

1.3 Disclaimer

Note that the performed audit represents current best practice and smart contract standards which are relevant
at the date of publication. After fixing the indicated issues the smart contracts should be re-audited.

https://github.com/tornadocash
https://abdk.consulting
https://poseidon-hash.info
https://tornado.cash/

TORNADO
REVIEW ABDK

2 Findings

IHasher.sol

Severity Issues
Major 1
Minor 3

IRewardSwap.sol

Severity Issues
Moderate 1
Minor 1
IVerifier.sol

Severity Issues
Minor 3
ITornado.sol

Severity Issues
Minor 4
Miner.sol

Severity Issues
Moderate 5
Minor 4

TornadoTrees.sol

Severity Issues
Major 2
Moderate 13
Minor 8

TORNADO
REVIEW ABDK

MerkleTreeWithHistory.sol

Severity Issues
Moderate 5
Minor 2

TornadoProxy.sol

Severity Issues

Minor 2

RewardSwap.sol

Severity Issues

Minor 3

OwnableMerkleTree.sol

Severity Issues
Minor 2
Total 58

TORNADO
REVIEW ABDK

3 Detailed Results

3.1 CVF-1 Suboptimal Solidity Version

e Severity Minor e Source [|Hasher.sol, IRewardSwap.sol, [Veri-
o Catezory Suboptimal Code fier.sol, 1Tornado.sol, TornadoTrees.sol, Tornado-
gory P Proxy.sol, OwnableMerkleTree.sol, ITornadoTrees

e Status Closed

Description The current Solidity version should be 0.6.0 according to the common best practice.
Recommendation Change Solidity version.

Listing 1: Suboptimal Solidity Version

3 pragma solidity ~0.6.12;

3.2 CVF-2 Generic interface name

e Severity Minor e Status Info

e Category Suboptimal Code e Source |Hasher.sol

Description The current interface name it too generic. The function name refer to Poseidon and input sizes
supported related to particular business use cases.
Recommendation Consider renaming:

e functions to reflect corresponding use case. The hashTreeNode for the function with two inputs and the
hashDeposit for the function with three inputs

e the interface for example TornadoHasher.

Listing 2: Generic interface name

5 interface IHasher {;

3.3 CVF-3 Reference to Poseidon

e Severity Minor e Status Info

e Category Suboptimal Code e Source IHasher.sol

Description The references to Poseidon in this line may interfere the another hash function switch.
Recommendation Change implementation.
Client Comment Implementation already has the poseidon function selector, we can't change it in the interface.

Listing 3: Reference to Poseidon

6 function poseidon(bytes32[2] calldata inputs) external
pure returns (bytes32);

TORNADO
REVIEW ABDK

3.4 CVF-4 Large input type

e Severity Major e Status Info

e Category Suboptimal Code e Source IHasher.sol

Description Poseidon-like hash functions typically accept inputs from domain smaller than bytes32, whereas
bytes32 elements should be represented at least as a pair of input elements.

Recommendation Consider explicitly passing bytes31 or another smaller type to ensure there is no collision.
Client Comment This is a valid point but requires a fix in circomlib. In our project this function is only called
from TornadoTrees.sol, where we know that all arguments are not overflowing: block number, address, and output
of mimic hash (tornado commitment and nullifier)

Listing 4: Large input type

6 function poseidon(bytes32[2] calldata inputs) external
pure returns (bytes32);

3.5 CVF-5 Return absence

e Severity Moderate e Status Fixed

e Category Suboptimal Code e Source |IRewardSwap.sol

Description The swap function should return the number of the swapped tokens.
Recommendation Consider adding return.

Listing 5: Return absence

7 function swap(address recipient, uint amount) external;

3.6 CVF-6 Generic interface name

e Severity Minor e Status Info

e Category Suboptimal Code e Source |Verifier.sol

Description The name of the TVerifier interface is quite generic, while the set of function corresponds to the
particular business use cases of Tornado protocol.

Recommendation Consider renaming the interface to ITornadoVerifier. Also see 3.2 for function name
suggestions.

Listing 6: Generic interface name

5 interface IVerifier {

10

TORNADO
REVIEW ABDK

3.7 CVF-7 Generic function name

e Severity Minor e Status Info

e Category Suboptimal Code e Source |Verifier.sol

Description The numbers look arbitrary, while function name looks generic.

Recommendation If each number of inputs corresponds to a particular business scenario, then this should be
reflected in the function name like verifyTreeUpdateProof for the function with 4 inputs,
verifyWithdrawProof for the function with 7 inputs, verifyRewardProof for the function with 12 in-
puts.

Client Comment We can’t change selectors because verifier contract is auto generated.

Listing 7: Generic function name

6 function verifyProof(bytes calldata proof, uint256[4] calldata input)
external view returns (bool);

3.8 CVF-8 Incorrect function

e Severity Minor e Status Fixed

e Category Documentation e Source |Tornado.sol
Description Perhaps, in this line a typo.

Recommendation Perhaps, the correct function should be ITornadolnstance.
Client Comment We can’t change selectors because verifier contract is auto generated.

Listing 8: Incorrect function

5 interface ITornado {;

3.9 CVF-9 Incorrect function parameter naming

e Severity Minor e Status Fixed

e Category Documentation e Source ITornado.sol

Description Unlike names of function parameters in other interfaces, in this line underscore prefixes are used.
Recommendation Consider using consistent naming.

Listing 9: Incorrect function parameter naming

6 function deposit(bytes32 commitment) external payable;

11

TORNADO
REVIEW ABDK

3.10 CVF-10 Documentation Comment

e Severity Minor e Status Info

e Category Documentation e Source ITornado.sol

Description It is unclear what happens with ether sent along with a call.
Recommendation Consider adding documentation comment.
Client Comment We think docs for this should be in tornado-core project rather than this interface.

Listing 10: Documentation Comment

16) external payable;

3.11 CVF-11 Complicated interface

e Severity Minor e Status Info

e Category Suboptimal e Source Miner.sol

Description Each verifier has functions to verify all three proofs: reward, withdraw and tree update.
Recommendation Consider splitting [Verifier interface into three interfaces (probably implemented in the same
contract).

Listing 11: Complicated interface

16 IVerifier public immutable rewardVerifier;
17 IVerifier public immutable withdrawVerifier;
18 IVerifier public immutable treeUpdateVerifier;

3.12 CVF-12 Uninitialized variable

e Severity Minor e Status Info

e Category Suboptimal e Source Miner.sol

Description The accountCount variable is not initialized in the constructor.
Recommendation Consider to initialize the function.
Client Comment lts initial value of 0 is correct.

Listing 12: Uninitialized variable

27 uint256 public accountCount;

12

TORNADO
REVIEW ABDK

3.13 CVF-13 Bitwise operation

e Severity Minor e Status Info

e Category Suboptimal e Source Miner.sol

Recommendation 128 or other power of two would allow using bitwise operations for looping the history.
Client Comment We think bitwise operations are less readable than modulo

Listing 13: Bitwise operation

28 uint256 public constant ACCOUNT_ ROOT_ HISTORY SIZE = 100;

3.14 CVF-14 Expensive deployment

e Severity Moderate e Status Info

e Category Suboptimal e Source Miner.sol

Description The resolve using makes deployment more expensive and less convenient in development environ-
ment.

Recommendation Consider passing the iRewardSwap address directly.

Client Comment lts is required to solve circular dependencies in our create2 deploy script.

Listing 14: Expensive deployment

98 rewardSwap = IRewardSwap(resolve(rewardSwap));

99 governance = resolve(governance);

100 tornadoTrees = TornadoTrees(resolve(tornadoTrees));
101 rewardVerifier = IVerifier(resolve(verifiers[0]));
102 withdrawVerifier = IVerifier(resolve(verifiers[1]))
103 treeUpdateVerifier = |Verifier(resolve(verifiers [2]

)i
3.15 CVF-15 Incorrect comment

e Severity Moderate e Status Info

e Category Suboptimal e Source Miner.sol

Description The original comment insert empty tree root without incriminating accountCount counter. There
is no guarantee that the root is empty

Recommendation Consider using hardcoded constant value here or guarantee emptiness in some other way.
Client Comment The constant depends on tree depth. It has to be passed correctly and the contract has no way
to verify that (except very expensive way of calculating many poseidon hashes). Since after deployment everyone
can verify that it was passed correctly, we decided to leave it as is.

Listing 15: Incorrect comment

105 // insert empty tree root without incrementing accountCount counter

13

TORNADO
REVIEW ABDK

3.16 CVF-16 Documentation comment needed

e Severity Minor e Status Info

e Category Documentation e Source Miner.sol

Description An old account is nullified with inputNullifierHash, and a new account is inserted, so that
the new account has rate*block difference fee more money. The block difference is difference between deposit and
withdrawal.

Recommendation Consider add a comment on what statement is asserted by the proof.

Client Comment All relevant docs/comments are in rewardvVerifier circuit file.

Listing 16: Documentation comment needed

135 rewardVerifier.verifyProof(

3.17 CVF-17 SafeMath.sub incorrect using

e Severity Moderate e Status Info

e Category Suboptimal e Source Miner.sol

Description The SafeMath. sub is used to enforce business-level constraint. Generally it is supposed to be used
as a second line of defence and catch coding errors and incorrect usage.
Client Comment Why it shouldn't be used for business level constraint?.

Listing 17: SafeMath.sub incorrect using

202 uint256 amount = _args.amount.sub(_args.extData.fee, "Amount should be
greater than fee');

3.18 CVF-18 Unclear function behavior

e Severity Moderate e Status Fixed

e Category Unclear behavior e Source Miner.sol

Description The keccak252 function actually truncates keccak256 hash to 248 bits rather than 252. It is
unclear to say intentional it or not?

Listing 18: Unclear function behavior

257 function keccak252(bytes memory data) internal pure returns (bytes32) {

14

TORNADO
REVIEW ABDK

3.19 CVF-19 Redundant variable

e Severity Moderate e Status Fixed

e Category Unclear behavior e Source Miner.sol

Description The commitment function seems to be redundant. It can be taken from args.

Listing 19: Redundant variable

268 require(_args.leaf = commitment, "lncorrect commitment inserted");

3.20 CVF-20 Common functionality

e Severity Moderate e Status Info

e Category Suboptimal e Source TornadoTrees.sol

Description The OwnableMerkleTree is just a particular implementation of quite common functionality.
Recommendation The type of this storage variable should be turned to some interface like
the IMerkleTreeWithHistory.

Listing 20: Common functionality

12 OwnableMerkleTree public immutable depositTree;
13 OwnableMerkleTree public immutable withdrawalTree;

3.21 CVF-21 Suboptimal deploy

e Severity Moderate e Status Info

e Category Suboptimal e Source TornadoTrees.sol

Description Deploying each merkle tree as a separate contract is suboptimal.

Recommendation More efficient solution would be to implement Merkle tree with history as a structure + a
library and then allocate it in the contract’s own storage.

Client Comment We typically do only 1 call to it per transaction. Changing it to storage + library will require a
major rewrite and we don’t think it's worth it.

Listing 21: Suboptimal deploy

12 OwnableMerkleTree public immutable depositTree;

15

TORNADO
REVIEW ABDK

3.22 CVF-22 Inefficient hashing

e Severity Moderate e Status Info

e Category Suboptimal e Source TornadoTrees.sol

Description external contract for hashing is inefficient.

Recommendation Consider implementing hashing as a library

Client Comment External library will cost the same in terms of gas, and we can't inline it in the same contract
since it's written in pure evm assembly and also will not fit in contract size

Listing 22: Inefficient hashing

14 IHasher public immutable hasher;

3.23 CVF-23 Redundant word "Data"

e Severity Minor e Status Info

e Category Documentation e Source TornadoTrees.sol

Description the data word is redundant.
Client Comment This is not deposit itself, but rather an event that we received metadata about it. We think it
should be left as is.

Listing 23: Redundant word "Data"

23 event DepositData(address instance, bytes32 indexed hash, uint256 block,
uint256 index);

24 event WithdrawalData(address instance, bytes32 indexed hash, uint256
block, uint256 index);

3.24 CVF-24 Not indexed parameters

e Severity Moderate e Status Info

e Category Suboptimal e Source TornadoTrees.soll

Description The instance parameters should probably be indexed.
Client Comment We can’t imagine the case when it necessary. left as is.

Listing 24: Not indexed paremeters

23 event DepositData(address instance, bytes32 indexed hash, uint256 block,
uint256 index);

24 event WithdrawalData(address instance, bytes32 indexed hash, uint256
block, uint256 index);

16

TORNADO
REVIEW ABDK

3.25 CVF-25 Complicated Interface

e Severity Moderate e Status Info

e Category Suboptimal e Source TornadoTrees.sol

Description Both hashers implement both, 2- and 3-input hashing, while only one of them is used in each hasher.
Recommendation Consider splitting IHasher interface into two interfaces and name them according to business
use cases they cover, such as LeafHasher and NodeHasher.

Client Comment lIt's nice to have it, but we decided to leave it as is.

Listing 25: Complicated Interface

39 bytes32 _hasher2,
40 bytes32 _ hasher3,

3.26 CVF-26 The expensive deployment

e Severity Moderate e Status Info

e Category Suboptimal e Source TornadoTrees.sol

Description using the resolve makes deployment more expensive and less convenient in DEV environment.
Recommendation Consider passing TornadoProxy address directly.

Listing 26: The expensive deployment

43 tornadoProxy = resolve(tornadoProxy);
44 hasher = IHasher(resolve(_hasher3));
45 depositTree = new OwnableMerkleTree(levels,IHasher(resolve

(_hasher2)));

3.27 CVF-27 The redundant call

e Severity Minor e Status Info

e Category Suboptimal e Source TornadoTrees.sol.sol

Description the resolve call is redundant, as hasher2 was already resolved in the previous line.
Recommendation Consider caching in a local variable and reusing.
Client Comment It is done only once since it's a constructor, no big deal.

Listing 27: The redundant call

46 withdrawalTree = new OwnableMerkleTree(levels, IHasher(resolve

(_hasher2)));

17

TORNADO
REVIEW ABDK

3.28 CVF-28 Gas spending

e Severity Moderate e Status Info

e Category Suboptimal e Source TornadoTrees.sol

Description the push updates two storage slots: array element and array length. Thus, gas could be saved by
batching multiple deposits together.

Recommendation Consider implementing bulk register deposit operation.

Client Comment This function is called on every tornado cash deposit. We don't do batching there.

Listing 28: Gas spending

50 deposits.push(keccak256(abi.encode(instance, commitment,
blockNumber ())));

54 withdrawals.push(keccak256 (abi.encode(instance, nullifier ,
blockNumber ())));

3.29 CVF-29 Suboptimal Parameter

e SeverityMinor e Status Info

e Category Suboptimal e Source TornadoTrees.sol

Description Using Poseidon in this line here as in the updateDepositTree would allow shorter tree update
calls.
Client Comment Poseidon call costs >1000 gas while keccak is only 30.

Listing 29: Suboptimal Parameter

50 deposits.push(keccak256(abi.encode(instance, commitment,
blockNumber())));

54 withdrawals.push(keccak256(abi.encode(instance, nullifier ,
blockNumber())));

3.30 CVF-30 Incorrect Modifier

e Severity Moderate e Status Fixed

e Category Suboptimal e Source TornadoTrees.sol

Description the memory should be calldata, otherwise calldata modifiers of updateRoots parameters does
not make sense.

Listing 30: Incorrect Modifier

62 function updateDepositTree(TreelLeaf[] memory deposits) public {

18

TORNADO
REVIEW ABDK

3.31 CVF-31 Numerous checks

e Severity Major e Status Info
e Category Suboptimal e Source TornadoTrees.sol
Description

Recommendation The length will be checked on every loop iteration while it would be enough to check once
before the loop.
Client Comment How do we check length only once before the loop? Is it possible to remove array length check?.

Listing 31: Numerous checks

69 require(deposits[offset + i] = leafHash, "Incorrect deposit");
88 require(withdrawals[offset + i] = leafHash, "lIncorrect
withdrawal ");

3.32 CVF-32 Inputs overflow

e Severity Major e Status Info

e Category Overflow e Source TornadoTrees.sol

Description Some inputs may overflow the native poseidon domain size, thus creating overflows and maybe even
collisions.

Recommendation Consider adding explicit range checks.

Client Comment Instance is of type address, it can't overflow. Block number cannot be that high too. And hash
is the mimc hash taken from tornado cash instance and is guaranteed to be inside the field.

Listing 32: Inputs overflow

71 leaves[i] = hasher.poseidon([bytes32(uint256(deposit.instance)),
deposit.hash, bytes32(deposit.block)]);

90 leaves|[i] = hasher.poseidon ([bytes32(uint256 (withdrawal.instance)),
withdrawal . hash, bytes32(withdrawal.block)]);

19

TORNADO
REVIEW ABDK

3.33 CVF-33 Similar function

e Severity Moderate e Status Info

e Category Suboptimal e Source TornadoTrees.sol

Description the updateWithdrawalTree function is very similar to updateDepositTree and almost all
the code could be reused.

Recommendation Add the code into internal function that accepts storage reference to deposits/withdrawals
array, last processed deposit/withdrawal, and deposit/withdrawal tree, and returns new value for last processed
deposit/withdrawal.

Client Comment How to emit the right events inside the loop?

Listing 33: Similar function

81 function updateWithdrawalTree(TreeLeaf[] memory _withdrawals)
public {

3.34 CVF-34 Missed modifier

e Severity Moderate e Status Fixed

e Category Suboptimal e Source TornadoTrees.sol

Recommendation In the line instead of memory should be calldata, otherwise calldata modifiers of
updateRoots parameters does not make sense.

Listing 34: Missed modifier

81 function updateWithdrawalTree(TreeLeaf[] memory _withdrawals) public {

3.35 CVF-35 The name suggestion

e Severity Minor e Status Info

e Category Documentation e Source TornadoTrees.sol
Recommendation Perhaps,the areRecentRoots name would be better.

Client Comment The areRecentRoots name assumes that it should return a boolean value. In our case the
function reverts if input data is incorrect and returns nothing otherwise.

Listing 35: The name suggestion

100 function validateRoots(bytes32 depositRoot, bytes32
_withdrawalRoot) public view {

20

TORNADO
REVIEW ABDK

3.36 CVF-36 The name suggestion-2

e Severity Minor e Status Info

e Category Documentation e Source TornadoTrees.sol

Recommendation The withdrawals variable does not replace withdrawals it would be better to name it
newWithdrawals.

Listing 36: The name suggestion-2

121 function getRegisteredWithdrawals() external view returns(bytes32]]
memory _ withdrawals) {

3.37 CVF-37 Public function

e Severity Moderate e Status Info

e Category Suboptimal e Source TornadoTrees.sol

Recommendation the blockNumber () function should be internal.
Client Comment We override it in TornadoTreesMock for testing. We will leave it as is.

Listing 37: Public function

129 function blockNumber() public view virtual returns (uint256) {

3.38 CVF-38 The confusing interface name

e Severity Minor e Status Info

e Category Suboptimal e Source ITornadoTrees.sol

Description the ITornadoTrees interface name looks confusing. There is nothing related to trees inside. Trees
are internal implementation details of the particular implementation.
Recommendation Consider renaming to something like ITornadoRegistry.

Listing 38: The confusing interface name

5 interface ITornadoTrees {

21

TORNADO
REVIEW ABDK

3.39 CVF-39 The redundant word "New"

e Severity Minor e Status Fixed

e Category Suboptimal e Source ITornadoTrees.sol

Description the new word is probably redundant, as every deposit could be registered at most once.

Listing 39: The redundant word "New"

6 function registerNewDeposit(address instanse, bytes32 commitment)
external;

8 function registerNewWithdrawal(address instanse, bytes32 nullifier)
external;

3.40 CVF-40 The typo

e Severity Minor e Status Fixed

e Category Documentation e Source ITornadoTrees.sol

Description There is a typo in the line.
Recommendation There should be instance instead of instanse

Listing 40: The typo

6 function registerNewDeposit(address instanse, bytes32 commitment) external;
7
8 function registerNewWithdrawal(address instanse, bytes32 nullifier) external;

3.41 CVF-41 The complicated check

e Severity Moderate e Status Info

e Category Suboptimal e Source MerkleTreeWithHistory.sol

Description In the
insertIndex + _leaves.length < uint32(2)xxlevels
inserted index would go down from
2~levels - 1 to zero,
rather than go up, then this check would look like
(insertIndex >= _leaves.length).

Also, other parts of the code would be simpler.

Listing 41: The complicated check

76 require(insertindex + leaves.length < uint32(2)xxlevels, "Merkle
doesn 't have enough capacity to add specified leaves");

22

TORNADO
REVIEW ABDK

3.42 CVF-42 Gas efficient

e Severity Moderate e Status Fixed

e Category Suboptimal e Source MerkleTreeWithHistory.sol

Description the bytes32[] memory subtrees = filledSubtrees reads all subtrees into memory, in-
cluding those that are currently not used or will not be needed in the loop below. Probably, reading necessary
values directly from textttfilledSubtrees only when need would be more gas efficient.

Recommendation Consider refactoring.

Listing 42: Gas efficient

78 bytes32[] memory subtrees = filledSubtrees;

3.43 CVF-43 Suboptimal loop

e Severity Moderate e Status Info

e Category Suboptimal e Source MerkleTreeWithHistory.sol

noindentDescription the next loop
_leaves.length - 1

recomputes the inner tree hashes for each leaf, whereas it would be much more efficient to recompute the entire
tree based on the new leaves.
Recommendation Consider refactoring.

Listing 43: Suboptimal loop

80 for (uint32 j = 0; j < _leaves.length — 1; j++4)

3.44 CVF-44 Suboptimal Condition

e Severity Moderate e Status Fixed

e Category Suboptimal e Source MerkleTreeWithHistory.sol

Description the next condition i < level84s will never be false, as the loop is always exited via break
statement.
Recommendation Consider removing this conditions to make code more readable.

Listing 44: Suboptimal Condition

55 84 96 for (uint32 i = 0; i < levels; i++) {

23

TORNADO
REVIEW ABDK

3.45 CVF-45 The suboptimal index

e Severity Minor e Status Info

e Category Documentation e Source MerkleTreeWithHistory.sol

Description Perhaps, »=1 would be more efficient and more clear.

Listing 45: The suboptimal index

92 index /= 2

3.46 CVF-46 Redundant loop

e Severity Minor e Status Info

e Category Documentation e Source MerkleTreeWithHistory.sol

Description The uint32 i = 0; i < levels; i++loop is probably redundant,

as https://eips.ethereum.org/EIPS/eip-1283 makes it very cheap to overwrite storage slot with the same value.
Client comment We tried it in remix, and overwriting a storage slot with the same value costs 800 gas (1
SLOAD).

Listing 46: Redundant loop

97 // using local map to save on gas on writes if elements were not modified

3.47 CVF-47 Suboptimal delegating

e Severity Moderate e Status Open

e Category Suboptimal e Source MerkleTreeWithHistory.sol

Description Delegating the rest to insert makes code harder to read and is probably suboptimal.
Recommendation Consider implementing self-contained version of bulkInsert that calculates hashes from
bottom to top rather then from left to right.

Client comment

Listing 47: Suboptimal delegating

5 interface ITornadoTrees {

24

TORNADO
REVIEW ABDK

3.48 CVF-48 Confusing function name

e Severity Minor e Status Info

e Category Suboptimal e Source TornadoProxy.sol

Description the updateInstances name of function is confusing. It actually adds/removes instance from the
set of valid instances, rather than “updates” it.

Recommendation Consider splitting into two functions: addInstance and removeInstance or renaming
to setInstanceStatus.

Client comment

Listing 48: Confusing function name

39 function updatelnstances(lTornado instance, bool update) external
onlyGovernance {

3.49 CVF-49 Misleading file name

e Severity Minor e Status Info

e Category Suboptimal e Source RewardSwap.sol

Description the word “float” is misleading, as the library actually implements fixed point, rather than floating
point arithmetic's.

Recommendation Consider file renaming.

Client comment

Listing 49: Misleading file name

7 import "./utils/FloatMath.sol";

3.50 CVF-50 Expensive deployment

e Severity Minor e Status Info

e Category Suboptimal e Source RewardSwap.sol

Description the resolve (miner) just makes deployment more expensive and less convenient in DEV environ-
ment.

Recommendation Consider passing Miner address directly.

Client comment

Listing 50: Expensive deployment

51 miner = resolve(miner);

25

TORNADO
REVIEW ABDK

3.51 CVF-51 Inefficient function

e Severity Minor e Status Info

e Category Suboptimal e Source RewardSwap.sol

Description the exp2 function is slightly more efficient.
Recommendation Consider using it instead of exp. This will require adjusting poolWeight value accordingly.
Client comment The gas reduction is too small, it's not worth making the code less readable for that.

Listing 51: Inefficient function

71 intl28 exp = FloatMath .exp (pow);

3.52 CVF-52 Index return absence

e Severity Minor e Status Info

e Category Suboptimal e Source OwnableMerkleTree.sol

Description there is no return for the ITornadoTrees function. It should probably return the index of the first
inserted leaf.

Recommendation Consider renaming to something like ITornadoRegistry.

Client comment We think it will be confusing for the caller why he submitted array of items and got only a single
number in return

Listing 52: Index return absence

14 function bulklnsert(bytes32[] calldata leaves) external
onlyOwner {

TORNADO
REVIEW

References

[1] Solidity Documentation
https://docs.soliditylang.org/en/v0.6.0/060-breaking-changes.html

27

	Introduction
	About ABDK
	About Customer
	Disclaimer

	Findings
	Detailed Results
	CVF-1 Suboptimal Solidity Version
	CVF-2 Generic interface name
	CVF-3 Reference to Poseidon
	CVF-4 Large input type
	CVF-5 Return absence
	CVF-6 Generic interface name
	CVF-7 Generic function name
	CVF-8 Incorrect function
	CVF-9 Incorrect function parameter naming
	CVF-10 Documentation Comment
	CVF-11 Complicated interface
	CVF-12 Uninitialized variable
	CVF-13 Bitwise operation
	CVF-14 Expensive deployment
	CVF-15 Incorrect comment
	CVF-16 Documentation comment needed
	CVF-17 SafeMath.sub incorrect using
	CVF-18 Unclear function behavior
	CVF-19 Redundant variable
	CVF-20 Common functionality
	CVF-21 Suboptimal deploy
	CVF-22 Inefficient hashing
	CVF-23 Redundant word "Data"
	CVF-24 Not indexed parameters
	CVF-25 Complicated Interface
	CVF–26 The expensive deployment
	CVF-27 The redundant call
	CVF-28 Gas spending
	CVF-29 Suboptimal Parameter
	CVF-30 Incorrect Modifier
	CVF-31 Numerous checks
	CVF-32 Inputs overflow
	CVF-33 Similar function
	CVF-34 Missed modifier
	CVF-35 The name suggestion
	CVF-36 The name suggestion-2
	CVF-37 Public function
	CVF-38 The confusing interface name
	CVF-39 The redundant word "New"
	CVF-40 The typo
	CVF-41 The complicated check
	CVF-42 Gas efficient
	CVF-43 Suboptimal loop
	CVF-44 Suboptimal Condition
	CVF-45 The suboptimal index
	CVF-46 Redundant loop
	CVF-47 Suboptimal delegating
	CVF-48 Confusing function name
	CVF-49 Misleading file name
	CVF-50 Expensive deployment
	CVF-51 Inefficient function
	CVF-52 Index return absence

