

Tornado Governance and Token

Smart Contracts. Audit

Mikhail Vladimirov and Dmitry Khovratovich

23rd October 2020

This document describes the audit process of the Tornado Governance and Token
smart contracts performed by ABDK Consulting.

1. Introduction
We’ve been asked to review the Tornado Governance and Token smart contracts
given in separate files.

2. Governance
In this section we describe issues found in the Governance.sol.

2.1 Moderate Issues
This section lists moderate issues, which were found in the smart contract.

1. Line 190: the delegatecall allows target contract to make arbitrary
modifications in Governance's storage, which could be dangerous. One way
to address this issue is to move critical parts of Goverance's storage into a
separate contract, that will allow Governance and only Governance to modify
values.This separate contract could maintain modification counter. So, before
doing a delegate call, Governance could remember the address of that
storage contract (in case it is mutable) and the value of the modification
counter. After the delegatecall, Governance could check that neither address
to the storage contract nor modification counter changed, and revert in case
they did.

Authors’ comment: This is an intended behavior. We avoid any calldata for proposals so
it will be more readable for users

 TORNADO
GOVERNANCE AND TOKEN
 REVIEW

ABDK
CONSULTING

https://gist.github.com/AleksandraZv/c7886aa22e0c74ea34aa2597b3d354a2
https://gist.github.com/AleksandraZv/c7886aa22e0c74ea34aa2597b3d354a2#file-governance-sol-L190
http://www.abdk.consulting/

2. Line 195, 197: the data.length > 0 condition and else reverts the whole
transaction, thus the proposal will not be marked as executed. Consider
marking the proposal as failed instead of reverting the transaction.

Authors’ comment: This is intended behavior. If execution fails for some time the
proposal will eventually become expired.

2.2 Suboptimal Code
This section lists suboptimal code patterns, which were found in the smart contract.

1. Line 78, 89: it should be cheaper to have two separate events: one for vote
and another for vote revocation instead of one support .

2. Line 91: setting torn to a dead address doesn't guarantee that the contract will
be fully inoperable. There could be control paths to self destruct that still work
even when torn refers to a dead address. Actually, there are no self destruct
calls in the contract, so, probably, the protection is redundant.

3. Line 125: the propose function doesn't allow using delegated voting power to
exceed the proposed threshold. Consider implementing such ability.

4. Line 191: there is no way to pass additional parameters to the called
contracts, thus a new contract has to be deployed to almost every proposal.
Consider implementing an ability to pass additional parameters along with
delegate calls.

5. Line 208: there is no way to revoke current vote by the _castVote function
without casting a new one. Consider implementing such ability.

6. Line 220: the current vote is reverted even if the new vote is the same as the
current vote.

7. Line 244: the next code _lockTokens(voter,
proposal.endTime.add(EXECUTION_DELAY)); should be done only
when a proposal was extended.

8. Line 245: the VoteCast event doesn't reflect the previous vote that was
probably revoked by the call. Consider emitting a separate event in case
reverted previous vote.

FIXED:
1. Line 78, 89: the next parameters should be indexed:

● proposer

● voter

● proposalId (and should go first)
● id

2.3 Other Issues
This section lists other minor issues which were found in the token smart contract.

1. Line 76, 89: events are usually named via nouns. For example
ProposalExecuted could be ProposalExecution or Execution.

2. Line 264, 266: there should be probably < instead of <=.

 RHO
 REVIEW

 ABDK
 CONSULTING

https://gist.github.com/AleksandraZv/c7886aa22e0c74ea34aa2597b3d354a2#file-governance-sol-L195
https://gist.github.com/AleksandraZv/c7886aa22e0c74ea34aa2597b3d354a2#file-governance-sol-L197
https://gist.github.com/AleksandraZv/c7886aa22e0c74ea34aa2597b3d354a2#file-governance-sol-L78
https://gist.github.com/AleksandraZv/c7886aa22e0c74ea34aa2597b3d354a2#file-governance-sol-L89
https://gist.github.com/AleksandraZv/c7886aa22e0c74ea34aa2597b3d354a2#file-governance-sol-L91
https://gist.github.com/AleksandraZv/c7886aa22e0c74ea34aa2597b3d354a2#file-governance-sol-L125
https://gist.github.com/AleksandraZv/c7886aa22e0c74ea34aa2597b3d354a2#file-governance-sol-L191
https://gist.github.com/AleksandraZv/c7886aa22e0c74ea34aa2597b3d354a2#file-governance-sol-L208
https://gist.github.com/AleksandraZv/c7886aa22e0c74ea34aa2597b3d354a2#file-governance-sol-L220
https://gist.github.com/AleksandraZv/c7886aa22e0c74ea34aa2597b3d354a2#file-governance-sol-L244
https://gist.github.com/AleksandraZv/c7886aa22e0c74ea34aa2597b3d354a2#file-governance-sol-L245
https://gist.github.com/AleksandraZv/c7886aa22e0c74ea34aa2597b3d354a2#file-governance-sol-L78
https://gist.github.com/AleksandraZv/c7886aa22e0c74ea34aa2597b3d354a2#file-governance-sol-L89
https://gist.github.com/AleksandraZv/c7886aa22e0c74ea34aa2597b3d354a2#file-governance-sol-L76
https://gist.github.com/AleksandraZv/c7886aa22e0c74ea34aa2597b3d354a2#file-governance-sol-L89
https://gist.github.com/AleksandraZv/c7886aa22e0c74ea34aa2597b3d354a2#file-governance-sol-L264
https://gist.github.com/AleksandraZv/c7886aa22e0c74ea34aa2597b3d354a2#file-governance-sol-L266

FIXED:
Line 86: events are usually named via nouns. For example, Vote for the VoteCast,
NewProposal or ProposalCreation for the ProposalCreated.

3. TORN
In this section we describe issues found in the torn.sol.

3.1 Fixed Moderate Flaws
This section lists moderate flaws, which were found in the smart contract.

Line 28: the next check totalSupply() == 0 is unreliable as tokens are burnable. Thus it is
possible to reinitialize TORN after burning all the tokens. More reliable check would be:
require (_governance != address (0));

require (governance == address (0));

3.2 Suboptimal Code
This section lists suboptimal code patterns, which were found in the smart contract.

1. Line 22: seems like the Recipient data structure is not used anymore.
2. Line 47: the function name changeTransferability looks cumbersome

and uncommon. Two functions: pause /unpause or a single function the
setPaused would look more conventional.

3. Line 58, 65: the next events:
● Allowed

● Disallowed

is emitted even if the address wasn't in the allowed list.
4. Line 75: the next requirement

require(!paused() || allowedTransferee[from] ||

allowedTransferee[to], "TORN: paused")
 could be simplified with the whenNotPaused modifier.

5. Line 85: the next check _to != address(0) is redundant. It is anyway
possible to send tokens to the dead address.

6. Line 90, 95: the next formula _balance == 0 ? totalBalance :
Math.min(totalBalance, _balance) looks like unnecessary
complication. The contract becomes more predictable if ether sends as much
as the user asked.

FIXED
1. Line 94: note that since _token is untrusted, balanceOf may not be a view function but can

execute arbitrary code.

3.3 Other Issues
This section lists other minor issues which were found in the token smart contract.

 RHO
 REVIEW

 ABDK
 CONSULTING

https://gist.github.com/AleksandraZv/c7886aa22e0c74ea34aa2597b3d354a2#file-governance-sol-L86
https://gist.github.com/AleksandraZv/0fc79aba7f25d19e4930bd8f64efddc4
https://gist.github.com/AleksandraZv/0fc79aba7f25d19e4930bd8f64efddc4#file-torn-sol-L28
https://gist.github.com/AleksandraZv/0fc79aba7f25d19e4930bd8f64efddc4#file-torn-sol-L22
https://gist.github.com/AleksandraZv/0fc79aba7f25d19e4930bd8f64efddc4#file-torn-sol-L47
https://gist.github.com/AleksandraZv/0fc79aba7f25d19e4930bd8f64efddc4#file-torn-sol-L58
https://gist.github.com/AleksandraZv/0fc79aba7f25d19e4930bd8f64efddc4#file-torn-sol-L65
https://gist.github.com/AleksandraZv/0fc79aba7f25d19e4930bd8f64efddc4#file-torn-sol-L75
https://gist.github.com/AleksandraZv/0fc79aba7f25d19e4930bd8f64efddc4#file-torn-sol-L85
https://gist.github.com/AleksandraZv/0fc79aba7f25d19e4930bd8f64efddc4#file-torn-sol-L90
https://gist.github.com/AleksandraZv/0fc79aba7f25d19e4930bd8f64efddc4#file-torn-sol-L95
https://gist.github.com/AleksandraZv/0fc79aba7f25d19e4930bd8f64efddc4#file-torn-sol-L94

1. Line 19: events are usually named via nouns. Here some examples:
● Permit for the Allowed
● PermitRevocation for the Disallowed

FIXED:
2. Line 14: the word token in a name of token is probably redundant.
3. Line 15, 81: there should be IERC20 instead of ERC20.

4. Vesting
In this section we describe issues found in the vesting.sol.

4.1 Suboptimal Code
This section lists suboptimal code patterns, which were found in the smart contract.

1. Line 29: using months (or, strictly speaking 30-days intervals) as a time unit
for cliff and durations reduces the contract's flexibility. Consider using seconds
instead.

2. Line 51: the next check
require(_beneficiary != address(0), "Beneficiary cannot

be empty")
looks redundant. It is anyway possible to specify a dead beneficiary address.

FIXED:
1. Line 69: the released variable is used without being initialized.

4.2 Fixed Other Issues
This section lists other minor issues which were found in the token smart contract.

Line 21: events are usually named via nouns. Here some examples:
● Release for the Released
● Revocation for the Revoked

5. ERC20Permit
In this section we describe issues found in the ERC20Permit.sol.

5.1 Suboptimal Code
This section lists suboptimal code patterns, which were found in the smart contract.

1. Line 31: the _updateDomainSeparator function is redundant. The domain
separator will anyway be updated on first call to permit(...) .

2. Line 58-59: the next line
_nonces[owner]++;

_approve(owner, spender, amount);

 RHO
 REVIEW

 ABDK
 CONSULTING

https://gist.github.com/AleksandraZv/0fc79aba7f25d19e4930bd8f64efddc4#file-torn-sol-L19
https://gist.github.com/AleksandraZv/0fc79aba7f25d19e4930bd8f64efddc4#file-torn-sol-L14
https://gist.github.com/AleksandraZv/0fc79aba7f25d19e4930bd8f64efddc4#file-torn-sol-L15
https://gist.github.com/AleksandraZv/0fc79aba7f25d19e4930bd8f64efddc4#file-torn-sol-L81
https://gist.github.com/AleksandraZv/36ba47d84b275f8f096b32f8a4d213d7
https://gist.github.com/AleksandraZv/36ba47d84b275f8f096b32f8a4d213d7#file-vesting-sol-L29
https://gist.github.com/AleksandraZv/36ba47d84b275f8f096b32f8a4d213d7#file-vesting-sol-L51
https://gist.github.com/AleksandraZv/36ba47d84b275f8f096b32f8a4d213d7#file-vesting-sol-L69
https://gist.github.com/AleksandraZv/36ba47d84b275f8f096b32f8a4d213d7#file-vesting-sol-L21
https://gist.github.com/AleksandraZv/659a0e96882c919eb6288af341292061
https://gist.github.com/AleksandraZv/659a0e96882c919eb6288af341292061#file-erc20permit-sol-L31
https://gist.github.com/AleksandraZv/659a0e96882c919eb6288af341292061#file-erc20permit-sol-L58
https://gist.github.com/AleksandraZv/659a0e96882c919eb6288af341292061#file-erc20permit-sol-L59

could be done when calculating hashStruct to avoid reading
_nonces[owner] from the storage for the second time.

3. Line 65: the nonces getter would not be necessary if the function would be
public.

4. Line 72-80: it would be cheaper to concatenate everything and hash at once.

5.2 Other Issues
This section lists other minor issues which were found in the token smart contract.

Line 59: the returned value is ignored. Probably not an issue.

6. Signatures.sol
Several issues were found in the Signatures.sol but the contract was later
deprecated.

7. Constants.sol
In this section we describe issues found in the Constants.sol.

7.1 Major Flaws
This section lists major flaws, which were found in the smart contract.

Line 47, 51: the next parameters: the executionExpiration and the
proposalThreshold not range checked. Setting it above TORN total
supply would lock up Governance. Consider adding an explicit check.

FIXED
Line 39, 43: the executionDelay parameter is not range checked. Setting it above
EXECUTION_EXPIRATION would lock up Governance. Consider adding an explicit check.

7.2 Suboptimal Code
This section lists suboptimal code patterns, which were found in the smart contract.

1. Line 28: the _initializeConstants function is probably redundant, as
setXXX functions could be used instead. Consider moving its logic into
Governance.initialize.

2. Line 30: if TORN supply changes, the EXECUTION_EXPIRATION may stop
being 0.5%. If the percentage is important, consider specifying it instead of the
number of tokens.

3. Line 39: each setXXX function allows setting a single parameter, while there
could be situations when one wants to set several parameters atomically.
Consider implementing a setter function that sets all parameters at once.

FIXED

 RHO
 REVIEW

 ABDK
 CONSULTING

https://gist.github.com/AleksandraZv/659a0e96882c919eb6288af341292061#file-erc20permit-sol-L65
https://gist.github.com/AleksandraZv/659a0e96882c919eb6288af341292061#file-erc20permit-sol-L72
https://gist.github.com/AleksandraZv/659a0e96882c919eb6288af341292061#file-erc20permit-sol-L80
https://gist.github.com/AleksandraZv/659a0e96882c919eb6288af341292061#file-erc20permit-sol-L59
https://gist.github.com/AleksandraZv/b08f8353c57f7af0093d6e84bbe403c6
https://gist.github.com/AleksandraZv/f4202c73ea86d6f7e39bec16467680e3
https://gist.github.com/AleksandraZv/f4202c73ea86d6f7e39bec16467680e3#file-constants-sol-L47
https://gist.github.com/AleksandraZv/f4202c73ea86d6f7e39bec16467680e3#file-constants-sol-L51
https://gist.github.com/AleksandraZv/f4202c73ea86d6f7e39bec16467680e3#file-constants-sol-L39
https://gist.github.com/AleksandraZv/f4202c73ea86d6f7e39bec16467680e3#file-constants-sol-L43
https://gist.github.com/AleksandraZv/f4202c73ea86d6f7e39bec16467680e3#file-constants-sol-L28
https://gist.github.com/AleksandraZv/f4202c73ea86d6f7e39bec16467680e3#file-constants-sol-L30
https://gist.github.com/AleksandraZv/f4202c73ea86d6f7e39bec16467680e3#file-constants-sol-L39

1. Line 4: despite its name Constants, the contract actually defines mutable storage variables
rather than constants. Consider renaming to Configuration or something like this.

7.3 Other Issues
This section lists other minor issues which were found in the token smart contract.

1. Line 6: upper case is commonly used for real compile-time constants. Using it
for mutable storage variables is confusing.

FIXED
1. Line 33: 75 seconds instead of just 75 would be more readable.

8. ECDSA.sol
In this section we describe issues found in the ECDSA.sol.

8.1 Fixed Other Issues
This section lists other minor issues which were found in the token smart contract.

Line 45: byte(0, mload(add(signature, 0x60 could be done as:

mload(add(signature, 0x41))

9. Delegates.sol
In this section we describe issues found in the Delegates.sol.

9.1 Fixed Major Flaws
This section lists major flaws, which were found in the smart contract.

1. Line 12: in case when the msg.sender has already delegated its voting power, this will
undelegate the previous delegation without emitting an event. Consider either adding an explicit
check that msg.sender is not currently delegating, or emitting an Undelegate event in case
current delegation is overridden by the new one. Otherwise it would be hard to track current
delegations by logged event. After fixing came another problem: the delegate and the
undelegate share some functionality. It might be easier to have a single function with 0
argument meaning stop delegation.
Also, in case when the to is zero address, the call will actually undelegate the current
delegation. Consider adding an explicit check that the to is not zero.

9.2 Suboptimal Code
This section lists suboptimal code patterns, which were found in the smart contract.

1. Line 13: the Delegate event is emitted even if the new delegation is the
same as the current one.

2. Line 24: the function proposeByDelegate doesn't allow the caller to
combine its own voting power with voting powers of those who've delegated to

 RHO
 REVIEW

 ABDK
 CONSULTING

https://gist.github.com/AleksandraZv/f4202c73ea86d6f7e39bec16467680e3#file-constants-sol-L4
https://gist.github.com/AleksandraZv/f4202c73ea86d6f7e39bec16467680e3#file-constants-sol-L6
https://gist.github.com/AleksandraZv/f4202c73ea86d6f7e39bec16467680e3#file-constants-sol-L33
https://gist.github.com/AleksandraZv/49edc933f1f8fa65ff406428c57c4e03
https://gist.github.com/AleksandraZv/49edc933f1f8fa65ff406428c57c4e03#file-ecdsa-sol-L45
https://gist.github.com/AleksandraZv/a931242290c7eb162b57691b5878bdbc
https://gist.github.com/AleksandraZv/a931242290c7eb162b57691b5878bdbc#file-delegates-sol-L12
https://gist.github.com/AleksandraZv/a931242290c7eb162b57691b5878bdbc#file-delegates-sol-L13
https://gist.github.com/AleksandraZv/a931242290c7eb162b57691b5878bdbc#file-delegates-sol-L24

him. Consider implementing an ability to pass an array of the from
addresses, and to count voting powers of the caller and all specified delegates
together when checking the proposal threshold.

3. Line 39: the castDelegatedVote function always casts votes from the
msg.sender . In case when the msg.sender has very many delegates and
cannot cast votes from all of them in a single all due to block gas limit, he may
want to split the set of delegates into chunks and call the
castDelegatedVote for each chunk. This will do extra work of casting
votes from the msg.sender for each chunk. Consider implementing some
ability to the _castVote from a list of delegates but not from the
msg.sender .

9.3 Fixed Other Issues
This section lists other minor issues which were found in the token smart contract.

1. Line 26: the meaning of the target parameter is unclear from the function name and
signature. Consider adding the documentation comments and renaming the parameter.

10. Voucher
In this section we describe issues found in the Voucher.sol.

10.1 Fixed Critical Flaws
This section lists critical flaws, which were found in the smart contract.

Line 37: the pause function can be called by anyone and there is no way to
unpause the contract.
FIX: function removed.

10.2 Suboptimal Code
This section lists suboptimal code patterns, which were found in the smart contract.

1. Line 22: the blockTimestamp is unpredictable. It would be better to just
pass expiration time explicitly as a constructor argument.

2. Line 43: the next check to == address(0) looks redundant. It is anyway
possible to transfer tokens to zero address. Also this check seems irrelevant
to the error message.

10.3 Other Issues
This section lists other minor issues which were found in the token smart contract.

Line 9: the next comment TornadoCash voucher for early
adopters supposed to be token name, rather than token description.

 RHO
 REVIEW

 ABDK
 CONSULTING

https://gist.github.com/AleksandraZv/a931242290c7eb162b57691b5878bdbc#file-delegates-sol-L39
https://gist.github.com/AleksandraZv/a931242290c7eb162b57691b5878bdbc#file-delegates-sol-L26
https://gist.github.com/AleksandraZv/0bcb7441ed76285cd97df731efdce72a
https://gist.github.com/AleksandraZv/0bcb7441ed76285cd97df731efdce72a#file-voucher-sol-L37
https://gist.github.com/AleksandraZv/0bcb7441ed76285cd97df731efdce72a#file-voucher-sol-L22
https://gist.github.com/AleksandraZv/0bcb7441ed76285cd97df731efdce72a#file-voucher-sol-L43
https://gist.github.com/AleksandraZv/0bcb7441ed76285cd97df731efdce72a#file-voucher-sol-L9

11. Core
In this section we describe issues found in the Core.sol.

11.1 Fixed Critical Flaws
This section lists critical flaws, which were found in the smart contract.

Line 13: the amounts[i] = will always throw, as the length of the amounts is zero.
Add the following line before the loop:
amounts = new uint256[] (accs.length);

11.2 Fixed Other Issues
This section lists other minor issues which were found in the token smart contract.

1. Line 7: the delegatedTo mapping is not used in the contract. Consider moving it where it is
used, or moving here the functions, that use this mapping.

2. Line 9: the balances name is confusing. It doesn't say that these are locked balances.
Consider renaming to the lockedBalances.

3. Line 11: the getBalances function is probably redundant as balances function is already
public. However it may save some gas when called for many addresses at once.

12. Summary
Based on our findings, we also recommend the following:

1. Fix the major issues.
2. Pay attention to moderate issues.
3. Refactor the code to remove suboptimal parts.
4. Fix other (minor) issues.

 RHO
 REVIEW

 ABDK
 CONSULTING

https://gist.github.com/AleksandraZv/59a7f7c04253249ff83b9e2996ab8d6b
https://gist.github.com/AleksandraZv/59a7f7c04253249ff83b9e2996ab8d6b#file-core-sol-L13
https://gist.github.com/AleksandraZv/59a7f7c04253249ff83b9e2996ab8d6b#file-core-sol-L7
https://gist.github.com/AleksandraZv/59a7f7c04253249ff83b9e2996ab8d6b#file-core-sol-L9
https://gist.github.com/AleksandraZv/59a7f7c04253249ff83b9e2996ab8d6b#file-core-sol-L11

