

Tornado.Cash
Security Analysis

by Pessimistic

This report is public.

Published: November 10, 2020

Blockchain Security Analysis by Pessimistic 1

Abstract ..2

Disclaimer ..2

Summary ..2

General recommendations ...2

Procedure...3

Project overview ...4

Main security requirements ...4

Project description ..4

Manual analysis..5

Critical issues..5

Medium severity issues ...5

Front-running attack ..5

Low severity issues ...6

Bug ...6

Code quality ..6

Code logic ...6

Gas consumption ..7

Project configuration ..7

https://pessimistic.io/

Blockchain Security Analysis by Pessimistic 2

Abstract

In this report, we consider the security of the smart contracts of Tornado.Cash project. Our

task is to find and describe security issues in smart contracts of the platform.

Disclaimer

The audit does not give any warranties on the security of the code. One audit cannot be

considered enough. We always recommend proceeding with several independent audits and

a public bug bounty program to ensure the security of smart contracts. Besides, security

audit is not an investment advice.

Summary

In this report, we considered the security of the smart contracts of Tornado.Cash project. We

performed our audit according to the procedure described below.

The initial analysis showed an issue that can prevent a user from voting for a limited number

of times by front-running attack. Also, a number of low severity issues were found, including

a bug, gas consumption, code quality, code logic, and project configuration.

After the initial audit, the developers updated one of two repositories. Most of these issues

were fixed. The issues that were not fixed do not endanger project security.

General recommendations

We recommend fixing the issue with the front-running attack, adding documentation to the

project and using static analyzers and other automated tools for further development to

improve overall code quality.

https://pessimistic.io/
https://tornado.cash/
https://tornado.cash/

Blockchain Security Analysis by Pessimistic 3

Procedure

In our audit, we consider the following crucial features of the code:

1. Whether code logic corresponds to the specification.

2. Whether the code is secure.

3. Whether the code meets best practices.

We perform our audit according to the following procedure:

• Automated analysis

o We scan project’s code base with automated tools: Crytic, MythX, and

SmartCheck.

o We manually verify (reject or confirm) all the issues found by tools.

• Manual audit

o We inspect the specification and check whether the logic of smart contracts is

consistent with it.

o We manually analyze code base for security vulnerabilities.

o We assess overall project structure and quality.

• Report

o We reflect all the gathered information in the report.

https://pessimistic.io/
https://crytic.io/
https://mythx.io/
https://tool.smartdec.net/

Blockchain Security Analysis by Pessimistic 4

Project overview

Main security requirements

• Tokens can be withdrawn only by the owner (the user who deposited them)

• Only the tokens locked in the Governance contract can vote for or against a proposal

• Each token is counted either zero times or once for each proposal

• Users can only vote with their own tokens and the tokens that have been delegated to

them

• Tokens that are used for voting stay locked until expiration of EXECUTION_DELAY

period

• Only the user who has PROPOSAL_THRESHOLD tokens or is delegated

PROPOSAL_THRESHOLD by one address can create a proposal

• A proposal can be executed only if more than a half of all cast votes are for the

proposal and there are at least QUORUM_VOTES votes

All the requirements are satisfied.

Project description

For the analysis, we provided with two GitHub repositories of Tornado.Cash project:

• Governance contracts, commit 36f2b1b1b5df57a255b908fe6b22dc10b5865f24

• Token contracts, commit 8343c4f89267a25aeae71afaf49b1d8120196235

The project has no documentation.

The total LOC of audited sources is 701.

https://pessimistic.io/
https://tornado.cash/
https://github.com/tornadocash/governance/
https://github.com/tornadocash/governance/commit/36f2b1b1b5df57a255b908fe6b22dc10b5865f24
https://github.com/tornadocash/torn-token/
https://github.com/tornadocash/torn-token/commit/8343c4f89267a25aeae71afaf49b1d8120196235

Blockchain Security Analysis by Pessimistic 5

Manual analysis

The contracts were completely manually analyzed, their logic was checked. Besides, the

results of the automated analysis were manually verified. All the confirmed issues are

described below.

Critical issues

Critical issues seriously endanger smart contracts security. We highly recommend fixing

them.

The audit showed no critical issues.

Medium severity issues

Medium issues can influence project operation in current implementation. We highly

recommend addressing them.

Front-running attack

castDelegatedVote() function of Delegation contract at line 52 is susceptible to a front-

running attack.

Let a user (A) delegated tokens to another user (B). User B calls castDelegatedVote()

function, but user A decided to undelegate these tokens. If undelegate() transaction of

user A is mined before castDelegatedVote() transaction of user B,

castDelegatedVote() transaction will fail due to require() check at line 52.

This can be used by an attacker who can frontrun the caller of castDelegatedVote()

function, and thus prevent the user from voting.

We recommend replacing require() with the check that will skip undelegated tokens.

https://pessimistic.io/

Blockchain Security Analysis by Pessimistic 6

Low severity issues

Low severity issues can influence project operation in future versions of code. We

recommend taking them into account.

Bug

setVoteExtendTime() function of Configuration contract at line 69 should check if

passed value is correct, not the stored one.

This issue has been fixed in commit 6a6c4e0a3f198f3c5c0c5ac9a801e695defe8ed1.

Code quality

Governance contract has some issues with code quality:

• _transferTokens() function violates checks-effects-interactions pattern

• propose() function should be external

This issue has been fixed in commit b0ac86d19cc2e7b90df3a430790a90dcefc61a73.

• execute() function is declared as virtual for testing purposes. This approach

obstructs code readability.

• if execute() function is called for the address with no code (EoA or a self-

destructed contract), delegatecall() at line 180 will return (true, 0x), and the

function will emit ProposalExecuted event.

• To process this edge case correctly, delegatecall() is often protected by

extcodesize check.

This issue has been fixed in commit 572482c2e79ede5b5ecf0cfd5ec4ce7aef863597.

Token contracts have the following issues:

• blockTimestamp() function of ERC20permit contract is used to manipulate time

for testing purposes. This approach obstructs code readability.

• rescueTokens() function of TORN contract uses transfer() to send ether and

thus can fail due Out of gas at line 101.

• natspec for the constructor of Vesting contract misses _token and

_startTimestamp parameters.

Code logic

If _propose() function of Governance contract if called from proposeByDelegate()

function, ProposalCreated event should include the delegator as proposer.

This issue has been fixed in commit dce958ea348c12b59d1c373f12e30fefbf5fa99c.

https://pessimistic.io/

Blockchain Security Analysis by Pessimistic 7

Gas consumption

• Proposal and Receipt structs of Governance contract could utilize smaller uint

types, so the compiler optimizes storage consumption. E.g. block.timestamp fits

into uint32, and the whole TORN balance fits into uint88.

Proposal can be reduced to three storage slots and Receipt to one.

• Optimizer is disabled in truffle-config.js at line 51.

This issue has been fixed in commit 38fd36b7f9e7daae52bf5f8689d133579064246b.

Project configuration

truffle-plugin-verify is mentioned in truffle-config.js but is not managed by

package.json. This results in yarn coverage command failure.

This issue has been fixed in commit 38fd36b7f9e7daae52bf5f8689d133579064246b.

https://pessimistic.io/

Blockchain Security Analysis by Pessimistic 8

This analysis was performed by Pessimistic:

Evgeny Marchenko, Senior Security Engineer

Boris Nikashin, Analyst

Alexander Seleznev, Founder

November 10, 2020

https://pessimistic.io/

